Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.515
Filtrar
1.
Appl Microbiol Biotechnol ; 106(13-16): 4945-4961, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767011

RESUMO

Oncolytic viruses (OVs) represent a novel class of immunotherapeutics under development for the treatment of cancers. OVs that express a cognate or transgenic fusion protein is particularly promising as their enhanced intratumoral spread via syncytia formation can be a potent mechanism for tumor lysis and induction of antitumor immune responses. Rapid and efficient fusion of infected cells results in cell death before high titers are reached. Although this is an attractive safety feature, it also presents unique challenges for large-scale clinical-grade manufacture of OVs. Here we evaluate the use of four different suspension cell lines for the production of a novel fusogenic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV). The candidate cell lines were screened for growth, metabolism, and virus productivity. Permissivity was evaluated based on extracellular infectious virus titers and cell-specific virus yields (CSVYs). For additional process optimizations, virus adaptation and multiplicity of infection (MOI) screenings were performed and confirmed in a 1 L bioreactor. BHK-21 and HEK293SF cells infected at concentrations of 2 × 106 cells/mL were identified as promising candidates for rVSV-NDV production, leading to infectious titers of 3.0 × 108 TCID50/mL and 7.5 × 107 TCID50/mL, and CSVYs of 153 and 9, respectively. Compared to the AGE1.CR.pIX reference produced in adherent cultures, oncolytic potency was not affected by production in suspension cultures and possibly even increased in cultures of HEK293SF and AGE1.CR.pIX. Our study describes promising suspension cell-based processes for efficient large-scale manufacturing of rVSV-NDV. KEY POINTS: • Cell contact-dependent oncolytic virus (OV) replicates in suspension cells. • Oncolytic potency is not encompassed during suspension cultivation. • Media composition, cell line, and MOI are critical process parameters for OV production. • The designed process is scalable and shows great promise for manufacturing clinical-grade material.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , Cultura de Vírus/métodos , Replicação Viral
3.
Virol Sin ; 37(4): 547-557, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35504535

RESUMO

Virus identification is a prerequisite not only for the early diagnosis of viral infectious diseases but also for the effective prevention of epidemics. Successful cultivation is the gold standard for identifying a virus, according to the Koch postulates. However, this requires screening for a permissive cell line, which is traditionally time-, reagent- and labor-intensive. Here, a simple and easy-to-operate microfluidic chip, formed by seeding a variety of cell lines and culturing them in parallel, is reported for use in virus cultivation and virus-permissive host-cell screening. The chip was tested by infection with two known viruses, enterovirus 71 (EV71) and influenza virus H1N1. Infection with EV71 and H1N1 caused significant cytopathic effects (CPE) in RD and MDCK cells, respectively, demonstrating that virus cultivation based on this microfluidic cell chip can be used as a substitute for the traditional plate-based culture method and reproduce the typical CPE caused by virus infection. Using this microfluidic cell chip method for virus cultivation could make it possible to identify an emerging virus in a high-throughput, automatic, and unprecedentedly fast way.


Assuntos
Enterovirus , Vírus da Influenza A Subtipo H1N1 , Linhagem Celular , Microfluídica , Cultura de Vírus/métodos
4.
Microbiol Immunol ; 66(7): 361-370, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35545856

RESUMO

The practical use of cell-based seasonal influenza vaccines is currently being considered in Japan. From the perspective of adventitious virus contamination, we assessed the suitability of NIID-MDCK cells (NIID-MDCK-Cs) as a safe substrate for the isolation of influenza viruses from clinical specimens. We first established a sensitive multiplex real-time PCR system to screen for 27 respiratory viruses and used it on 34 virus samples that were isolated by passaging influenza-positive clinical specimens in NIID-MDCK-Cs. Incidentally, the limit of detection (LOD) of the system was 100 or fewer genome copies per reaction. In addition to influenza viruses, human enterovirus 68 (HEV-D68) genomes were detected in two samples after two or three passages in NIID-MDCK-Cs. To further investigate the susceptibility of NIID-MDCK-Cs to adventitious viruses, eight common respiratory viruses were subjected to passages in NIID-MDCK-Cs. The genome copy numbers of seven viruses other than parainfluenza 3 decreased below the LOD by passage 4. By passaging in NIID-MDCK-Cs, the genome numbers of the input HEV-D68, 1 × 108 copies, declined to 102 at passage 3 and to under the LOD at passage 4, whereas those of the other six viruses were under the LOD by passage 3. These results implied that during the process of isolating influenza viruses with NIID-MDCK-Cs, contaminating viruses other than parainfluenza 3 can be efficiently removed by passages in NIID-MDCK-Cs. NIID-MDCK-Cs could be a safe substrate for isolating influenza viruses that can be used to develop cell-based influenza vaccine candidate viruses.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Infecções por Paramyxoviridae , Vírus , Animais , Cães , Humanos , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Desenvolvimento de Vacinas , Cultura de Vírus/métodos
5.
Biotechnol Prog ; 38(5): e3277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633106

RESUMO

The Ambr15 system is an automated, high-throughput bioreactor platform which comprises 24 individually controlled, single-use stirred-tank reactors. This system plays a critical role in process development by reducing reagent requirements and facilitating high-throughput screening of process parameters. However, until now, the system was used to simulate processes involving cells in suspension or growing on microcarriers and has never been tested for simulating cells growing on macrocarriers. Moreover, to our knowledge, a complete production process including cell growth and virus production has never been simulated. Here, we demonstrate, for the first time, the amenability of the automated Ambr15 cell culture reactor system to simulate the entire SARS-CoV-2 vaccine production process using macrocarriers. To simulate the production process, accessories were first developed to enable insertion of tens of Fibra-Cel macrocarries into the reactors. Vero cell adsorption to Fibra-Cels was then monitored and its adsorption curve was studied. After incorporating of all optimized factors, Vero cells were adsorbed to and grown on Fibra-Cels for several days. During the process, culture medium was exchanged, and the quantity and viability of the cells were followed, resulting in a typical growth curve. After successfully growing cells for 6 days, they were infected with the rVSV-ΔG-Spike vaccine virus. The present results indicate that the Ambr15 system is not only suitable for simulating a process using macrocarriers, but also to simulate an entire vaccine production process, from cell adsorption, cell growth, infection and vaccine virus production.


Assuntos
COVID-19 , Cultura de Vírus , Animais , Reatores Biológicos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Técnicas de Cultura de Células/métodos , Chlorocebus aethiops , Humanos , SARS-CoV-2 , Células Vero , Cultura de Vírus/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35121528

RESUMO

An efficient chromatography-based virus purification method has been developed and validated for the non-pathogenic infectious virus PRD1. Compared to the conventional method that consists of relatively time-consuming and labour-intensive precipitation and density gradient ultracentrifugation steps, the method developed here is performed in a single flow using tandem-coupled anion exchange and size exclusion chromatography (AIEX-SEC) columns. This inline approach helps to minimize the loss of virus in the process and streamlines time consumption, since no physical transfer of the sample is required between purification steps. In the development process, sample feed composition, dynamic binding capacity and elution conditions for the AIEX resin as well as different exclusion limits for SEC resins were optimized to achieve maximal yield of pure infectious viruses. Utilizing this new approach, a high-quality virus sample was produced from a lysate feed in 320 min with a total yield of 13 mg purified particles per litre of cell lysate, constituting a 3.5-fold yield increase as compared to the conventional method, without compromising the high specific infectivity of the product (6 × 1012 to 7 × 1012 pfu/mg of protein). The yield of infectious viruses of the lysate feed was 54%. The easy scalability of chromatography-based methods provide a direct route to industrial usage without any significant changes needed to be made to the purification regime. This is especially interesting as the method has high potential to be used for purification of various viruses and nanoparticles, including adenovirus.


Assuntos
Cromatografia em Gel/métodos , Sefarose/química , Cultura de Vírus/métodos , Vírus/isolamento & purificação , Bacteriófago PRD1/química , Bacteriófago PRD1/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Vírus/química
7.
J Virol ; 96(6): e0148021, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107379

RESUMO

In our previous study, we found that a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic, and efficacious, which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate that is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Cultura de Vírus , Animais , Proteínas do Capsídeo/genética , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/genética , Chlorocebus aethiops , Camundongos , Desenvolvimento de Vacinas , Vacinas Atenuadas/genética , Células Vero , Vacinas Virais/genética , Cultura de Vírus/métodos
8.
Vaccine ; 40(13): 2036-2043, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216843

RESUMO

The adenovirus vector vaccines induce humoral and cellular immune responses and have been used to develop vaccines for effective prevention of life-threating viruses, such as Ebola and Coronaviruses. High demand of vaccines worldwide requires optimization of the production process. Perfusion process increases cell concentration and volumetric productivity, so that it becomes the commonly used strategy in vaccine production In this study, we optimized and developed a perfusion process for the adenovirus-based zoster vaccine production efficiently. We first tested different perfusion strategies in shake flasks, showing semi-continuous strategies for optimal HEK 293 cell growth. We then evaluated three empirical key process parameters (cell concentration at the time of infection (VCC), multiplicity of infection (MOI), virus production pH) by the design of experiment (DoE) method, from which the robust setpoint (VCC 1.04 × 107 cells/mL, MOI 9, and virus production pH 7.17) was confirmed in both shake flask and 2 L benchtop bioreactor. In the bioreactor, we compared the performances of two perfusion systems, the commercially-available XCell ATF® system and a novel peristaltic pump-driven alternating tangential flow perfusion system (PATFP system) that we developed. During cell cultivation stage, both perfusion systems have comparable performances regarding viable cell concentration and cell viability. At 2 dpi, the PATFP system resulted in an adenovirus titer of 2.1 × 1010 IFU/mL and cell-specific virus yield of 2,062 IFU/cell, reaching 75% and 77% of values for XCell ATF® system. This study demonstrates the perfusion process to be superior strategy for adenovirus-based vaccine production compared to the batch-mode strategy (1,467 IFU/cell). Furthermore, our PATFP system shows potential to be comparable to the XCell ATF® system, and it would become an alternative perfusion strategy for the vaccine production.


Assuntos
Vacinas contra Adenovirus , Vacina contra Herpes Zoster , Adenoviridae/genética , Reatores Biológicos , Células HEK293 , Humanos , Perfusão/métodos , Cultura de Vírus/métodos
9.
Biotechnol Bioeng ; 118(12): 4720-4734, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506646

RESUMO

By integrating continuous cell cultures with continuous purification methods, process yields and product quality attributes have been improved over the last 10 years for recombinant protein production. However, for the production of viral vectors such as Modified Vaccinia virus Ankara (MVA), no such studies have been reported although there is an increasing need to meet the requirements for a rising number of clinical trials against infectious or neoplastic diseases. Here, we present for the first time a scalable suspension cell (AGE1.CR.pIX cells) culture-based perfusion process in bioreactors integrating continuous virus harvesting through an acoustic settler with semi-continuous chromatographic purification. This allowed obtaining purified MVA particles with a space-time yield more than 600% higher for the integrated perfusion process (1.05 × 1011 TCID50 /Lbioreactor /day) compared to the integrated batch process. Without further optimization, purification by membrane-based steric exclusion chromatography resulted in an overall product recovery of 50.5%. To decrease the level of host cell DNA before chromatography, a novel inline continuous DNA digestion step was integrated into the process train. A detailed cost analysis comparing integrated production in batch versus production in perfusion mode showed that the cost per dose for MVA was reduced by nearly one-third using this intensified small-scale process.


Assuntos
Reatores Biológicos/virologia , DNA Viral/metabolismo , Vírus Vaccinia , Cultura de Vírus , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Contagem de Células , Linhagem Celular , Cromatografia em Gel , Custos e Análise de Custo , Patos , Desenho de Equipamento , Vírus Vaccinia/isolamento & purificação , Vírus Vaccinia/metabolismo , Cultura de Vírus/instrumentação , Cultura de Vírus/métodos
10.
J Microbiol Biotechnol ; 31(10): 1430-1437, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34489375

RESUMO

Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Reatores Biológicos , Cronobacter sakazakii/virologia , Cultura de Vírus/métodos , Meios de Cultura , Microbiologia de Alimentos , Fórmulas Infantis/microbiologia
11.
Bioengineered ; 12(1): 2095-2105, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34047682

RESUMO

As gene delivery tools, lentiviral vectors (LV) have broad applications in chimeric antigen receptor therapy (CAR-T). Large-scale production of functional LV is limited by the adherent, serum-dependent nature of HEK293T cells used in the manufacturing. HEK293T adherent cells were adapted to suspension cells in a serum-free medium to establish large-scale processes for functional LV production in a stirred bioreactor without micro-carriers. The results showed that 293 T suspension was successfully cultivated in F media (293 CD05 medium and SMM293-TII with 1:1 volume ratio), and the cells retained the capacity for LV production. After cultivation in a 5.5 L bioreactor for 4 days, the cells produced 1.5 ± 0.3 × 107 TU/mL raw LV, and the lentiviral transduction efficiency was 48.6 ± 2.8% in T Cells. The yield of LV equaled to the previous shake flask. The critical process steps were completed to enable a large-scale LV production process. Besides, a cryopreservation solution was developed to reduce protein involvement, avoid cell grafting and reduce process cost. The process is cost-effective and easy to scale up production, which is expected to be highly competitive.


Assuntos
Reatores Biológicos/virologia , Vetores Genéticos , Imunoterapia Adotiva , Lentivirus , Cultura de Vírus/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Linfócitos T
12.
J Virol ; 95(14): e0012321, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952643

RESUMO

African swine fever virus (ASFV) causes a virulent, deadly infection in wild and domestic swine and is currently causing a pandemic covering a contiguous geographical area from Central and Eastern Europe to Asia. No commercial vaccines are available to prevent African swine fever (ASF), resulting in devastating economic losses to the swine industry. The most advanced vaccine candidates are live attenuated strains developed using a genetically modified virulent parental virus. Recently, we developed a vaccine candidate, ASFV-G-ΔI177L, by deleting the I177L gene from the genome of the highly virulent ASFV pandemic strain Georgia (ASFV-G). ASFV-G-ΔI177L is safe and highly efficacious in challenge studies using parental ASFV-G. Large-scale production of ASFV-G-ΔI177L has been limited because it can replicate efficiently only in primary swine macrophages. Here, we present the development of an ASFV-G-ΔI177L derivative strain, ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine cell line. In challenge studies, ASFV-G-ΔI177L/ΔLVR maintained the same level of attenuation, immunogenic characteristics, and protective efficacy as ASFV-G-ΔI177L. ASFV-G-ΔI177L/ΔLVR is the first rationally designed ASF vaccine candidate that can be used for large-scale commercial vaccine manufacture. IMPORTANCE African swine fever is currently causing a pandemic resulting in devastating losses to the swine industry. Experimental ASF vaccines rely on the production of vaccine in primary swine macrophages, which are difficult to use for the production of a vaccine on a commercial level. Here, we report a vaccine for ASFV with a deletion in the left variable region (LVR). This deletion allows for growth in stable cell cultures while maintaining the potency and efficacy of the parental vaccine strain. This discovery will allow for the production of an ASF vaccine on a commercial scale.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Vacinas Virais/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular , Imunogenicidade da Vacina , Macrófagos/virologia , Pandemias , Deleção de Sequência , Suínos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Cultura de Vírus/métodos , Replicação Viral
13.
Elife ; 102021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835028

RESUMO

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.


Assuntos
Células Epiteliais , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Cultura de Vírus/métodos , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Proteólise , Sistema Respiratório/citologia , Sistema Respiratório/virologia , Serina Proteases/metabolismo
14.
Int J Mol Med ; 47(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846767

RESUMO

The Coronavirus Disease 2019 (COVID­19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID­19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT­PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)­based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID­19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID­19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Animais , Técnicas Biossensoriais/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Invenções , Microscopia Eletrônica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Cultura de Vírus/métodos
15.
BMC Vet Res ; 17(1): 93, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639955

RESUMO

BACKGROUND: Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). RESULTS: Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). CONCLUSIONS: This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


Assuntos
Reatores Biológicos , Vírus da Doença Nodular Cutânea/crescimento & desenvolvimento , Vírus da Peste dos Pequenos Ruminantes/crescimento & desenvolvimento , Vírus da Febre do Vale do Rift/crescimento & desenvolvimento , Animais , Células Cultivadas/virologia , Chlorocebus aethiops , Ovinos , Células Vero/virologia , Cultura de Vírus/instrumentação , Cultura de Vírus/métodos
16.
J Fish Dis ; 44(7): 987-992, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33631045

RESUMO

Infectious myonecrosis (IMN) is an important shrimp viral disease caused by infectious myonecrosis virus (IMNV). Based on previous reports, an attempt was made to propagate IMNV in apparently healthy C6/36 subclone of Aedes albopictus cell line. The confirmatory assays such as RT-PCR, real-time PCR and bioassay revealed that C6/36 cells were found to be susceptible to IMNV and these cells could be used easily for isolation and propagation of IMNV. The results of real-time PCR assay showed that a lower CT value of 22.25 in IMNV-infected cells was obtained on 10 day post-infection (d p.i.), whereas the higher CT value of 35.21 was obtained in IMNV-infected cells on 2 d p.i. There is no significant difference between CT values of IMNV production in vitro using C6/36 cell line and in vivo using shrimp. The IMNV propagated in C6/36 cells is capable of infecting shrimp and caused 100% mortality in shrimp. Clinical signs observed in shrimp injected with IMNV propagated in C6/36 cell line were found to be similar to naturally infected shrimp.


Assuntos
Vírus de RNA/fisiologia , Cultura de Vírus/métodos , Animais , Linhagem Celular , Culicidae
17.
J Clin Lab Anal ; 35(4): e23735, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33608968

RESUMO

BACKGROUND: The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated a pandemic with alarming rates of fatality worldwide. This situation has had a major impact on clinical laboratories that have attempted to answer the urgent need for diagnostic tools, since the identification of coronavirus disease 2019 (COVID-19). Development of a reliable serological diagnostic immunoassay, with high levels of sensitivity and specificity to detect SARS-CoV-2 antibodies with improved differential diagnosis from other circulating viruses, is mandatory. METHODS: An enzyme-linked immunosorbent assay (ELISA) using whole inactivated virus cultured in vitro, was developed to detect viral antigens. WB and ELISA investigations were carried out with sera of convalescent patients and negative sera samples. Both analyses were concurrently performed with recombinant MABs to verify the findings. RESULTS: Preliminary data from 10 sera (5 patients with COVID-19, and 5 healthy controls) using this immunoassay are very promising, successfully identifying all of the confirmed SARS-CoV-2-positive individuals. CONCLUSION: This ELISA appears to be a specific and reliable method for detecting COVID-19 antibodies (IgG, IgM, and IgA), and a useful tool for identifying individuals which have developed immunity to the virus.


Assuntos
Antígenos Virais , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Cultura de Vírus/métodos , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/química , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , Western Blotting , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Fosfoproteínas/química , Fosfoproteínas/imunologia , Fosfoproteínas/isolamento & purificação , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Células Vero
18.
Appl Microbiol Biotechnol ; 105(4): 1421-1434, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33515287

RESUMO

Similar to the recent COVID-19 pandemic, influenza A virus poses a constant threat to the global community. For the treatment of flu disease, both antivirals and vaccines are available with vaccines the most effective and safest approach. In order to overcome limitations in egg-based vaccine manufacturing, cell culture-based processes have been established. While this production method avoids egg-associated risks in face of pandemics, process intensification using animal suspension cells in high cell density perfusion cultures should allow to further increase manufacturing capacities worldwide. In this work, we demonstrate the development of a perfusion process using Madin-Darby canine kidney (MDCK) suspension cells for influenza A (H1N1) virus production from scale-down shake flask cultivations to laboratory scale stirred tank bioreactors. Shake flask cultivations using semi-perfusion mode enabled high-yield virus harvests (4.25 log10(HAU/100 µL)) from MDCK cells grown up to 41 × 106 cells/mL. Scale-up to bioreactors with an alternating tangential flow (ATF) perfusion system required optimization of pH control and implementation of a temperature shift during the infection phase. Use of a capacitance probe for on-line perfusion control allowed to minimize medium consumption. This contributed to a better process control and a more economical performance while maintaining a maximum virus titer of 4.37 log10(HAU/100 µL) and an infectious virus titer of 1.83 × 1010 virions/mL. Overall, this study clearly demonstrates recent advances in cell culture-based perfusion processes for next-generation high-yield influenza vaccine manufacturing for pandemic preparedness. KEY POINTS: • First MDCK suspension cell-based perfusion process for IAV produciton was established. • "Cell density effect" was overcome and process was intensified by reduction of medium use and automated process control. • The process achieved cell density over 40 × 106 cells/mL and virus yield over 4.37 log10(HAU/100 µL).


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Cultura de Vírus/métodos , Replicação Viral/fisiologia , Animais , Reatores Biológicos , Cães , Células Madin Darby de Rim Canino
19.
J Mol Med (Berl) ; 99(3): 425-438, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484281

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células Endoteliais/virologia , Herpesvirus Humano 8/fisiologia , Cultura de Vírus/métodos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Transformada , Doxiciclina/farmacologia , Células Endoteliais/citologia , Genoma Viral , Xenoenxertos , Histonas/fisiologia , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Plasmídeos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Esferoides Celulares/transplante , Esferoides Celulares/virologia , Serina-Treonina Quinases TOR/fisiologia , Latência Viral , Liberação de Vírus , Replicação Viral
20.
J Virol Methods ; 290: 114068, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460683

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that leads to acute diarrhea/vomiting, dehydration, and mortality in seronegative neonatal piglets. As widely known, attempts to culture porcine enteropathogenic coronaviruses, such as PDCoV and porcine epidemic diarrhea virus, in cells have been proven to be difficult. This study aimed to establish an efficient and cost-effective culture system for PDCoV using embryonated chicken eggs (ECEs) to enable future vaccine production and efficient virus isolation from infected animals. The inoculation of samples into the allantoic cavity of 3- to 7-day-old ECEs yielded efficient virus propagation even from porcine fecal samples. Virus propagation in 2- and 8-day-old ECEs were confirmed in 30.0 % and 11.1 % of the samples, respectively. This indicates that susceptible cells rapidly develop in 2-day-old ECEs and differentiate to mature cells that are nonsusceptible to PDCoV in 8-day-old layer chicken ECEs. Furthermore, our study demonstrated that PDCoV can be passaged in 6-day-old ECEs with high viral replicative efficiency. This technique for propagating PDCoV using ECEs is a powerful tool that could be utilized for PDCoV vaccine development and virus isolation from poultry, livestock, and wild animals.


Assuntos
Deltacoronavirus/crescimento & desenvolvimento , Deltacoronavirus/isolamento & purificação , Cultura de Vírus/métodos , Líquido Amniótico/virologia , Animais , Embrião de Galinha , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Inoculações Seriadas , Suínos , Doenças dos Suínos/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...